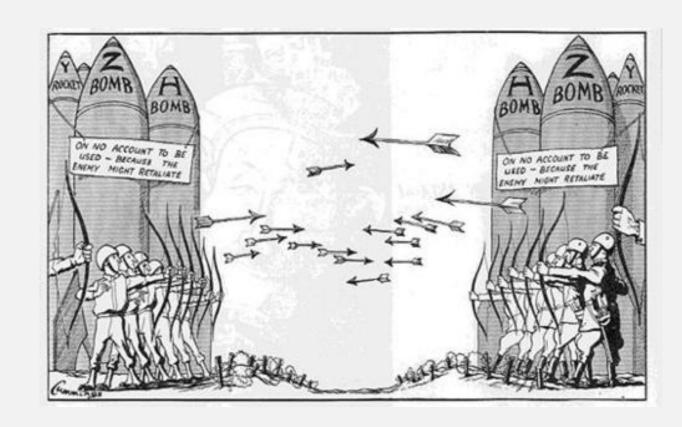
NUCLEAR SUPERIORITY AND THE BALANCE OF RESOLVE: EXPLAINING NUCLEAR CRISIS OUTCOMES

MATTHEW KROENIG

Morgan Puterbaugh

ALL THINGS NUCLEAR: INTRODUCTION


- Introduction of nuclear weapons into international system fundamentally transformed nature of international political competition
- Raised cost of war and reduced the incidence of direct military confrontation among possessors
- The nuclear crisis became the main arena for nuclear-armed states to settle important disputes
 - Substitution of crises for wars- Hoffman
 - The ability to prevail in a nuclear crisis was the central determinant of distribution of international power and influence
- But what is a <u>nuclear crisis?</u>
 - State exerting coercive pressure by raising risk of nuclear war until one state submits or it ends in disaster
 - A standoff between nuclear-armed states is a nuclear crisis, whether or not nuclear weapons are part of the dispute

TWO SCHOOLS OF THOUGHT

- Nuclear Brinkmanship Theory: The state that is willing to run the greatest risk of nuclear war before submitting will be most likely to win
 - Balance of Resolve that determines the outcome
 - More resolved states are willing to push harder in a crisis
 - States can escalate crisis situations, raising risk of nuclear war, in effort to force less resolved opponent to submit
- Many claim that nuclear superior states have used their nuclear advantage to coerce opponents into submission
 - No clear logic as to why nuclear superiority translates into improved crisis outcomes
- Why not both?

KROENIG'S THEORY TO BE TESTED

- Synthesizing the Nuclear Brinkmanship Theory with the arguments about advantages of nuclear superiority
 - Nuclear superiority: Advantage in size of state's nuclear arsenal relative to opponent
 - Nuclear superiority may influence nuclear crisis outcomes through its effect on the balance of resolve
 - Increases level of risk a state is willing to run in a crisis

NUCLEAR BRINKMANSHIP: THE DETAILS

Relies on Deterrence

- Nuclear capable states can't credibly threaten a nuclear attack on another nuclear capable state, but can make "a threat that leaves something to chance" Schelling
- Can threaten a situation that may spiral out of control
- Benefit of winning contested issue should be greater than each increase in risk of nuclear war
- Relies on Uncertainty
 - If states possessed compete information about their resolve and resolve of opponents, nuclear crises would not occur
 - The theory assumes intel is imcomplete, but the crisis itself helps to uncover some of it
- The level of risk a state is willing to risk relies on the state's political stakes in the conflict
 - Higher the stakes, more risk they can threaten to run
- Assumes that if both states have 2nd strike capability, the cost of nuclear war is equally devastating

NUCLEAR SUPERIORITY: THE DETAILS

- Nuclear Superiority provides states with coercive advantage
 - Cuban Missile Crisis 1962
 - Kargil Crisis 1999
 - Suggest nuclear superior states would incur fewer costs in event of disaster, increasing resolve
 and prospects of victory
- Nuclear strategists recognize that not all nuclear wars would be equally devastating
 - Deaths and causalities, economic destruction, recovery time, etc. all vary
- Nuclear strategists recognize that nuclear superiority reduces expected costs that a country would incur in event of war
 - More fire power to blunt retaliatory capability of opponents
 - When states believe they are superior and will succeed, they have more resolve to push harder

NUCLEAR BRINKMANSHIP MODEL

- Two states S_1 and S_{11} are moving toward nuclear crisis
 - S_I (potential challenger) decides to escalate crisis or submit to S_{II}
 - S_l submits? End of game with payoff (s_l, w_{ll}) s = payoff of submission and w = payoff of winning
 - S_1 escalates? Play shifts to S_{11} who chooses to escalate or submit
 - S_{II} submission ends game (w_I, s_{II}) or escalates
- This second escalation introduces nuclear war probability, f
 - If there is nuclear war, states receive payoff (d_1, d_{11}) d = payoff of disaster
 - No disaster? Play shifts back to S₁
 - If S_I escalates it can only do so by generating risk of disaster 2f, every escalation increases f by one
- Game continues until it ends in submission or disaster

NUCLEAR BRINKMANSHIP MODEL: CONT.

- 3 possible endings: Win, lose, or disaster
 - $w_1 > 0 > s_1 > d_1$ 0 = status quo
- In equilibrium a state will escalate if the payoff is greater than or equal to the payoff of submitting
 - S_1 's expected payoff of running risk of disaster r is $w_1(1-r) + rd_1$
 - S_1 would be willing to run risk of r if $s_1 \le w_1 (1-r) + rd_1$
- From this he derives R_I, the largest risk of disaster a state would be willing to run
 - $R_1 = (w_1 s_1)/(w_1 d_1)$
- The more resolved state, the state that is willing to tolerate highest risk of disaster, will win as long as crisis does not end in disaster
- Relies on incomplete information on balance of resolve
- S_{l} is more likely to prevail over S_{ll} when $R_{l} > R_{ll}$
 - R_I is increasing in w_I and decreasing in s_I
 - The values a state places on winning and submitting is based on a state's stakes in the crisis

KROENIG'S NEW MODEL & HYPOTHESES

- Brinkmanship theorists see the payoff of disaster d as the same for all states
 - Feel differentiating is not pertinent because most have 2nd strike capabilities
- Incorporates nuclear balance into payoff structure based on belief that not all nuclear wars would be
 equally devastating and the belief that nuclear superiority reduces expected costs of that state
- Assume S_I has nuclear superiority over S_{II}
 - d_{II} is cost of absorbing a nuclear attack by S_{I} and vice versa
 - In event of nuclear exchange, since S_{II} possesses smaller nuclear arsenal than S_{I_1} $d_I > d_I$
 - Also, since S_l will be willing to run a greater risk since they will be more likely to prevail, $R_l > R_{ll}$
- Hypothesis I: States that enjoy nuclear superiority will be more likely to win nuclear crises
- Hypothesis 2: The greater the state's level of nuclear superiority, the more likely it is to win nuclear crises

NUCLEAR CRISIS DATA

- International Crisis Behavior Project (ICB) list of international crises from 1945-2001
 - Information on outcomes, arsenal size, and political stakes
 - Using dyad unit of analysis
- Creates analysis on crisis only if one state perceives the other has directed a threatening action against it
- Identifies 52 nuclear crisis dyads in 20 unique crises, all with varying degrees of escalation
- Dependent Variable: Outcome
 - whether there is a winner (country achieves victory) or it's a loss (compromise, stalemate, or defeat)
 - Victory recorded in 18/52
- Independent Variable
 - Superiority and nuclear ration
 - Control Variables
 - Proximity, gravity, capabilities, regime, population, 2nd strike, violence, security

TABLE 1. Nuclear crises, 1945-2001

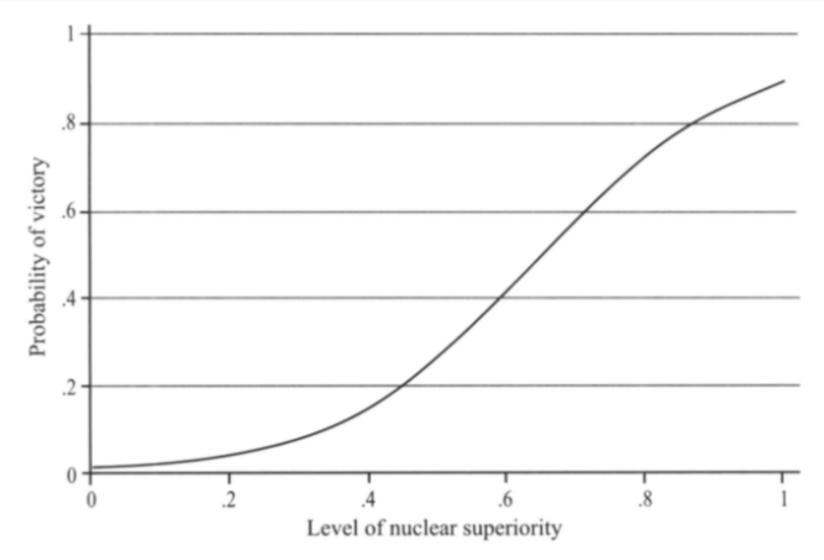
Crisis name	Year	Nuclear-armed participants			
Korean War	1950	Soviet Union, United States			
Suez crisis	1956	Great Britain, Soviet Union,* United States*			
Berlin deadline	1958	Great Britain, Soviet Union, United States			
Berlin wall	1961	France, Great Britain, Soviet Union,* United State			
Cuban Missile Crisis	1962	Soviet Union, United States*			
Congo crisis	1964	Soviet Union, United States*			
Six-Day War	1967	Israel,* Soviet Union, United States*			
Sino-Soviet border war	1969	China, Soviet Union*			
War of attrition	1970	Israel, Soviet Union			
Cienfuegos submarine base	1970	Soviet Union, United States*			
Yom Kippur War	1973	Israel, Soviet Union, United States*			
War in Angola	1975	Soviet Union,* United States			
Afghanistan invasion	1979	Soviet Union,* United States			
Able Archer exercise	1983	Soviet Union, United States			
Nicaragua, MIG-21S	1984	Soviet Union, United States			
Kashmir	1990	India, Pakistan			
Taiwan Strait crisis	1995	China, United States*			
India/Pakistan nuclear tests	1998	India, Pakistan			
Kargil crisis	1999	India,* Pakistan			
India Parliament attack	2001	India,* Pakistan			

Note: A state's victory in a crisis is denoted by an asterisk. Not all crises have victors and some crises have multiple victors. For a list of when countries acquired nuclear weapons, see Gartzke and Kroenig 2009.

EMPIRICAL ANALYSIS

TABLE 2. Cross tabulations of nuclear crisis outcomes, 1945-2001

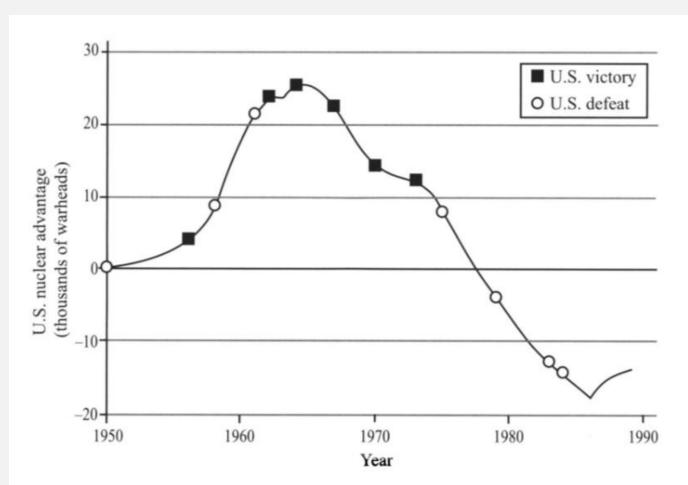
		Outc	Outcome	
		Win	Loss	Total
SUPERIORITY	Yes	14 (54%)	12 (46%)	26 (100%)
	No Total	4 (15%) 18 (35%)	22 (85%) 34 (65%)	26 (100%) 52 (100%)


Note: $X^2 = 8.497 (p = 0.004)$.

REGRESSION ANALYSIS

TABLE 3. Nuclear superiority and nuclear crisis outcomes, 1945-2001

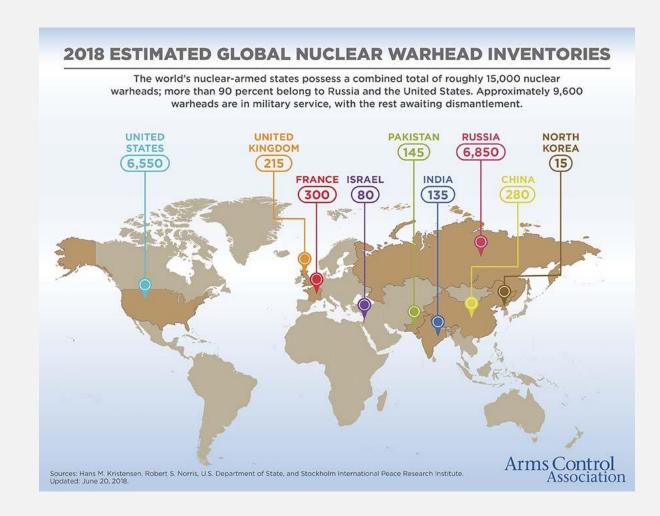
Variables	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
SUPERIORITY	1.117**	2.005**	1.877***			
(0.4	(0.413)	(0.676)	(0.459)			
NUCLEAR RATIO				1.294*	4.252***	2.479***
				(0.509)	(1.306)	(0.622)
PROXIMITY		1.666***	1.196***		2.323***	1.283***
		(0.409)	(0.238)		(0.551)	(0.284)
GRAVITY		-0.760			-0.952	
		(0.755)			(0.875)	
REGIME		0.032			0.036	
		(0.038)			(0.033)	
CAPABILITIES		0.451			-1.602	
		(1.667)			(1.713)	
2ND STRIKE		2.296*	0.566		2.328	
		(1.096)	(0.501)		(1.315)	
POPULATION		-9.54e-07			2.52e-07	
		(1.44e-06)			(1.59e-06)	
VIOLENCE		0.299**	0.239*		0.333**	0.205*
		(0.104)	(0.097)		(0.119)	(0.087)
SECURITY		-7.320			-7.611	
		(5.911)			(6.719)	
Constant	-1.020***	-3.159***	-3.025***	-1.091***	-3.883***	-2.786***
	(0.277)	(0.844)	(0.898)	(0.313)	(1.030)	(0.561)
N	52	52	52	52	52	52
Wald chi ²	7.32	303.70	40.28	6.47	797.25	22.88
Log pseudolikelihood	-29.107	-22.663	-24.818	-30.240	-22.572	-26.456
Pseudo R ²	0.1322	0.324	0.260	0.098	0.327	0.211


Note: Robust standard errors adjusted for clustering by crisis dyad in parentheses. *significant at 5%; **significant at 1%; ***significant at 0.1%. All tests are two-tailed.

Note: Estimates obtained from Model 5. Level of nuclear superiority is from lowest (0) to highest (1).

FIGURE 1. Conditional effect of the degree of nuclear superiority on the probability of victory in nuclear crises, 1945–2001

NUCLEAR CRISES BETWEEN U.S. AND USSR 1949-1989



Note: The y-axis depicts the U.S. nuclear advantage relative to the Soviet Union measured in numbers of nuclear warheads.

FIGURE 2. U.S.-Soviet Union nuclear balance and crisis outcomes, 1949-1989

ROBUSTNESS TESTS

- Robustness tests examine whether the observed relationship is the result of a selection effect, sensitive to modeling decisions, or are dependent on the character of the nuclear balance between the states
- Selection Effect
 - Possible that nuclear superior states are more likely to win because they select into crises they know they will win
- Performs multiple tests to determine that his data is not skewing results, but finds no evidence that it is

CONCLUSION

- Nuclear Balance between states is important for analyzing patterns of victory in nuclear crises
- States that enjoy nuclear superiority over their opponents are more likely to win
- Findings hold after:
 - Controlling for conventional military balance and Selection into crises
 - Robust to exclusion of each individual crisis and weapon state
- New model of nuclear brinkmanship theory to incorporate nuclear superiority
- Nuclear Crises are competitions in risk taking
 - Nuclear superior and resolved states are willing to run the risk
 - Superiority also decreases costs and allows said state to stay in crisis longer
- Evidence that political stakes shape crisis outcomes