
Alexandre Debs and Nuno Monteiro

Introduction

- problems in study of power shifts
 - most large and rapid power shifts are endogenous to state interaction resulting from militarization efforts
 - studies that do endogenize power shift fail to acknowledge the time lag between the moment in which a state decides to invest in military capabilities and the moment these become available, ignoring the possibility of a preventive attack
- argument: when power shifts are endogenous, preventive war requires uncertainty and preventive attacks can occur in the absence of unambiguous evidence that the target is militarizing

Theory and Literature

- power transition theory
 - has reached a stalemate
- CINC index

FIGURE 1. Distribution of exogenous and endogenous power shifts as a function of their magnitude

The Model

- strategic interaction between two states
 - o T target
 - o D deterrer
- T decides whether or not to militarize, D decides whether or not to launch preventive war
- states face two problems
 - o commitment problem
 - information problem

The Model

- D decides to declare war or peaceful division of pie
- the two-period game
 - o timing and solution concept
 - solving the game
- infinite-horizon game

2003 US Invasion of Iraq

- March 20, 2003 US invasion of Iraq
- main motivation was to prevent Iraqi nuclearization
- nuclearization would make Saddam immune to any external regime-change efforts
- role of Sept 11, 2001 attacks
- 1 Percent Doctrine
- US administrations inability to eradicate uncertainty about Iraqi nuclearization led to breakdown of peace

2003 Invasion of Iraq

- US not certain of detecting Iraqi nuclear program
- unwilling to run risk of nuclear Iraq, US launched preventive war
- intelligence reports and services
- Iraq possessed no WMD and no solid WMD program
- why Iraq not North Korea?

Rational Treatment?

- Saddam misperceived US resolve to invade
- multiple accounts of Saddam's behavior
- Bush administration's underestimation of cost of war and post-war governance in Iraq
- irrational standard for Iraq to prove absence of WMD

Conclusion

- information problems play a crucial role in providing a rationalist explanation for war
- power shifts do not in and of themselves lead to conflict
 - only when information problems are present
- mistaken preventive wars are more likely under conditions of power preponderance

You Get What You Give: A Model of Nuclear Reversal

William Spaniel

Introduction

- Why do potential proliferators agree to provisions (weapons inspections, divestment)?
- Why does international community push for weapons inspections if they've proven ineffective at revealing information?
- Argument: Additional burdens to proliferation allow parties to reach agreements that would have been impossible otherwise

The Model

- to analyze nuclear reversal, uncertainty over proliferation behaviors, bargaining over weapons, and preventive war together
- Two players
 - State A proliferator
 - State B opponent
- four phases to the game

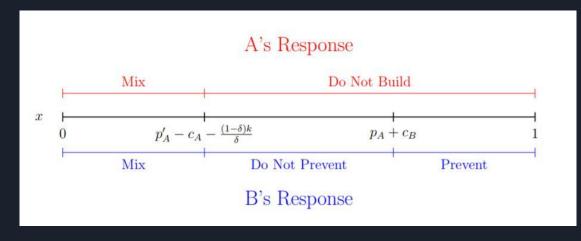
Phase One

- A chooses cost k ∈ [k,∞)
 - o price A will pay if it attempts to proliferate
- selecting k means A will allow itself cheapest and easiest path to nuclear weapon
- higher values correspond to more barriers to proliferation

Phase Two

- B offers A division of stakes $x \in [0, 1]$
- If A rejects → game-ending war
- A captures pA ∈ [0, 1) portion of the good, B takes the remainder
- states pay respective costs of c_A , $c_B > 0$
- payoffs persist long term, states share common discount factor δ
- A's payoff for rejecting is p_A c_A and B's is 1 p_A c_B

Phase Three


- A accepts division of stakes
- A chooses to build nuclear weapon or not
- B chooses whether or not to fight a preventive war without knowing A's decision

Phase Four

- if A builds and B does not prevent, both accept proposed division
- B offers proposal y ∈ [0, 1]
- accepting locks in division for remainder of time, no further weapons construction, preventive war
- rejecting leads to game-ending war

Preventive War Calculus

	Prevent	\sim Prevent
Build	$p_A - c_A - (1 - \delta)k, 1 - p_A - c_B$	$(1 - \delta)x + \delta(p'_A - c_A) - (1 - \delta)k, (1 - \delta)(1 - x) + \delta(1 - p_A + c_A)$
\sim Build	$p_A - c_A, 1 - p_A - c_B$	x, 1-x

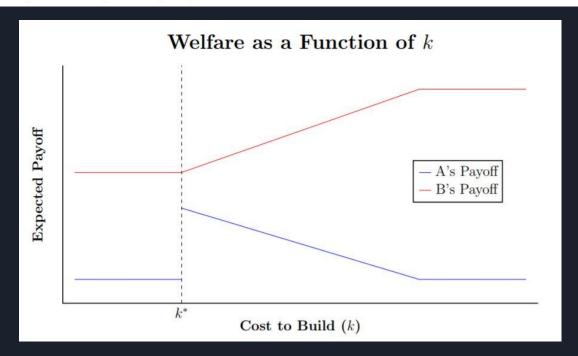
Lemma 1. Suppose A has successfully nuclearized. In every SPE, B offers $y = p'_A - c_A$ and A accepts.

Lemma 2. Suppose $x \in \left[p'_A - c_A - \frac{k(1-\delta)}{\delta}, p_A + c_B\right]$. Then A does not build and B does not prevent.

Lemma 3. Suppose $x > p_A + c_B$. Then B prevents and A does not build.

Lemma 4. Suppose $x < p'_A - c_A - \frac{k(1-\delta)}{\delta} < p_A + c_B$. Then both players mix in equilibrium. Specifically, B prevents with probability $\frac{p'_A - c_A - \frac{(1-\delta)k}{\delta} - x}{p'_A - c_A - x}$ and A builds with probability $\frac{x - p_A - c_B}{\delta(x - p'_A + c_A)}$.

Bargaining to Avoid War


Proposition 1. Suppose the cost of proliferation is great relative to the extent of the power shift (i.e., $k \ge \frac{\delta(p'_A - p_A)}{1 - \delta}$). In equilibrium, B offers $x = p_A - c_A$ and A accepts. The states then play the strategies in Lemma 2.

Proposition 2. Suppose the cost of proliferation falls in a medium range (i.e., $k \in \left[k^*, \frac{\delta(p_A' - p_A)}{1 - \delta}\right]$ holds). In equilibrium, B offers $x = p_A' - c_A - \frac{(1 - \delta)k}{\delta}$ and A accepts. The states then play the strategies in Lemma 2.

Proposition 3. Suppose the cost of proliferation is low (i.e., $k < k^*$). The subgame has multiple SPE. B receives its war payoff in every SPE. Preventive war, mistaken preventive war, and successful proliferation are supported in SPE.

Endogenous Nuclear Reversal

Proposition 4. In every SPE, if the smallest possible cost to build is sufficiently low (i.e., $\underline{k} < k^*$), A artificially inflates its cost to $k = k^*$.

Empirical Implications

- weapons inspections
 - imperfect solution
- inspections as power shifts
- costly weapons inspections
- possible detection
- infinite horizon

Conclusion

- rivals of states with nuclear programs should not treat proposed reversals as obvious traps
- reversals are skipping stones to an agreement
- agreements cannot be fleeting
- reason to be cautiously optimistic about the future of nuclear non-proliferation