Why Nuclear Energy Programs Rarely Lead to Proliferation

Nicholas L. Miller

- Miller paper claims that the relationship between nuclear energy and proliferation programs is overstated
- Two main reasons why pursuing energy programs would actually limit the odds of proliferation
- 1. By engaging in any nuclear program you increase interest and visibility of you country. Making it more likely that weapons programs will be discovered.
- 2. This attracts sanctions to be emplaced increasing the costliness of your program.

Arguments for Energy Programs Help Proliferation

- Nuclear energy programs lower the cost of proliferation via gaining the ability to produce materials such as enriched uranium.
- 2. The actual infrastructure created for nuclear energy can subsequently create a desire to proliferate regardless of original intent.
- 3. Countries can use these programs to cover for gaining over necessary materials for weapons programs.

How Energy Programs Restrain Proliferation

- Two arguments against conventional wisdom
- 1. It increases visibility of the country
- → The process of acquiring more materials and technology increases ability for outside agencies to collect data.
- → Offers visibility on sites such as reactors, research centers, and nuclear staff.
- → If within NPT or by supplier requirements the sites will be under scrutiny of these organizations.
- → Nuclear programs are not necessary for starting weapons programs. Ex: Israel, Iraq Post-Osirak, and North Korea.

Cont.

- 2. Heightened Costs From Nonproliferation Sanctions
- → Nuclear fuel and other material is heavily controlled
- → Ex: Soviet Union

Empirical Assessment

- Designed to prove the relationship of increased "pursuit" and energy programs is unlikely
- Table 1 lists countries which did have nuclear energy programs that did not pursue nuclear weapons from 1945-2009
- Energy programs defined as building or having a functioning reactor
- "Pursuit" is defined as taking serious steps such as upper level officials moving politically in that direction, or development of specific technology
- Table 2 summarizes the level and timing of nuclear energy activity among countries that pursued them from 1954-2009.

Italy (1958) Poland (1982)** Ukraine (1991)* Bulgaria (1970) West Germany (1958) Finland (1971) Romania (1982) Czech Republic (1993)* East Germany (1960) Austria (1972)** Cuba (1983)** Slovakia (1993)* NOTE: Year when construction on first power reactor begun (or when reactor inherited at independence) appears in parentheses. *Inherited power reactors at independence rather than constructing them.

Hungary (1974)

Mexico (1976)

Yugoslavia (1975)

Philippines (1976)**

Armenia (1991)*

Lithuania (1991)*

Slovenia (1991)*

Kazakhstan (1991)*

Table 1. States with Nuclear Energy Programs That Did Not Pursue Nuclear Weapons,

**Construction on	power reactors never co	empleted/reactors never b	ecame operational.		
Table 2. Nuclear Energy Programs and Pursuit, 1954–2009					
No Energy Program during Pursuit	Energy Program during Pursuit	Energy Program Predated Pursuit	Power Reactor Operating befor Pursuit		
Australia China Egypt	Argentina Brazil France	Argentina Brazil India	Argentina		

South Korea

Japan (1960)

Spain (1964)

Netherlands (1965)

Switzerland (1965)

1945-2009

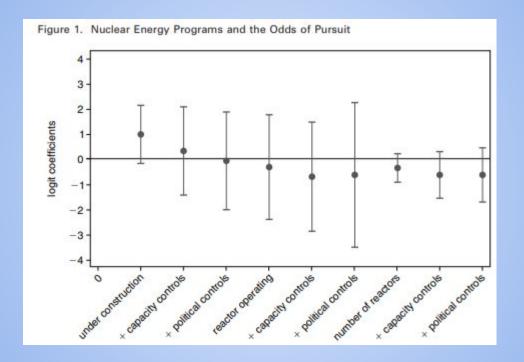
Belgium (1957)

Sweden (1957)

Canada (1958)

Czechoslovakia (1958)

No Energy Program during Pursuit	Energy Program during Pursuit	Energy Program Predated Pursuit	Power Reactor Operating before Pursuit
Australia	Argentina	Argentina	Argentina
China	Brazil	Brazil	
Egypt	France	India	
Iraq	India	Iran	
Israel	Iran	Pakistan	
Libya	North Korea*		
Syria	Pakistan		
-	South Africa		


Taiwan *North Korea briefly had light water power reactors under construction in the early 2000s as part of the Agreed Framework.

2	Annual Probability of Pursuit	Number of Observations
No power reactor operating	0.25%	5,606
Power reactor operating	0.17%	592
P-value from a chi-square test	assessing the difference across	the two groups: 0.70.
110-00-00-00-00-00-00-00-00-00-00-00-00-		
Table 4. Nuclear Energy Progr	ams and the Probability of Pursu	it, 1954–2000
Table 4. Nuclear Energy Progr	ams and the Probability of Pursu	it, 1954–2000 Number of Observations
Table 4. Nuclear Energy Progr No power reactor operating or under construction		

Analyzes the probability of a country with a reactor pursuing versus one without

Multivariate Models

- Three separate variables to measure nuclear programs
- 1. A binary variable of 1 if a state has a reactor or is building one.
- 2. A binary variable of 1 if a state has a reactor in operation
- 3. The total number of reactors

Energy Programs & Weapons Acquisition Assessment

- Assessment of whether or not energy programs lead to acquisition
- Only 17 case studies
- Codes with the presence of a energy program and the last year of the weapons program.

	Did Not Acquire Nuclear Weapons	Acquired Nuclear Weapons	% Acquired
No energy program	Australia, Egypt, Iraq, Libya, Syria	China, Israel, North Korea	3/8 (37.5%)
Energy program	Argentina, Brazil, Iran, South Korea, Taiwan	France, India, Pakistan, South Africa	4/9 (44%)

Political Restraints on Pursuit or Acquisition

- 1. Higher Likelihood of Detection and Pressure
- Tests to see whether or not nuclear energy programs increases likelihood of detection of parallel weapons program, and thereby increasing outside pressure
- Data from Montgomery and Mount, examines declassified assessments of 16 countries
- Binary variable equal to 1 if country's weapons programs project was underestimated, otherwise 0.
- Results: substantially less likely to underestimate programs with finished or building reactors (14.8% vs. 51.5%).

Cont.

- 2. Whether or not countries with energy programs are more likely to experience nonproliferation pressure
 - Analysis on data from 1945-2000 of countries pursuing nuclear weapons
 - Result: countries who are building or have completed reactors are three times more likely to face U.S. sanctions in a given year.

Heightened Costs From Nonproliferation Sanctions

- Countries may have higher costs associated with sanctions
- Ex: Japan
- Ex: Sweden
- Ex: Taiwan/South Korea

Conclusion

- States with nuclear programs have not had a significantly higher likelihood of nuclear pursuit.
- States may have better access to nuclear knowledge/material but
- 1. Trying to use your energy program as cover will not be effective
- 2. Countries with energy programs face higher cost associated with sanctions

Critiques

- Arguements focused on just American sanctions
- More pictures at the end