

The Invisible Fist: How Potential Power Coerces Concessions

William Spaniel

University of Rochester

January 1, 2013

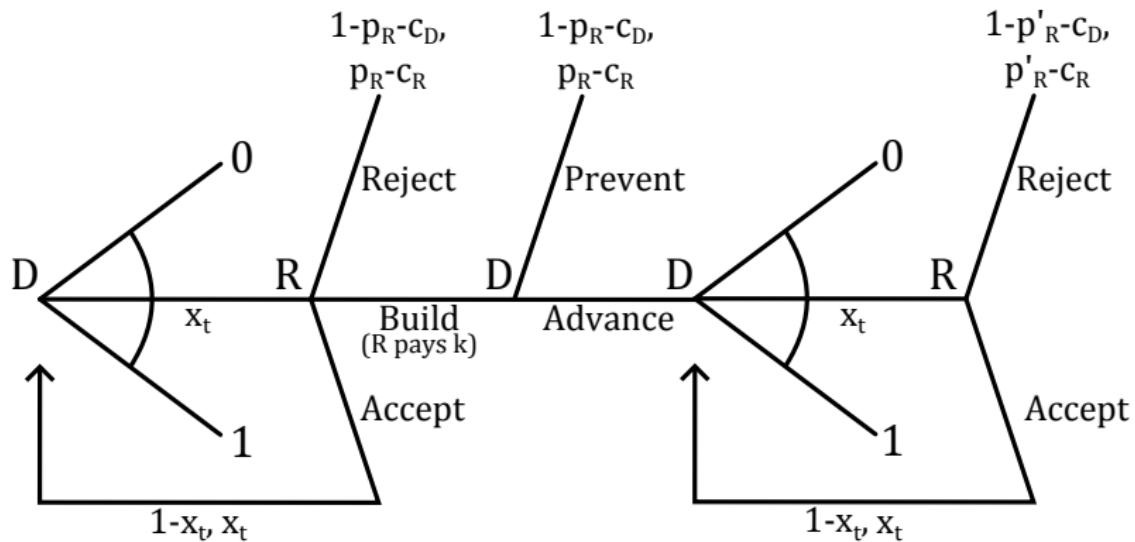
- Literature gives conditions:
 - ① Bargaining = zero sum; nukes improve bargaining position
 - ② Preventive war no problem
 - ③ Cost of nukes < additional concessions

Bargaining?

- Why not buy off potential proliferator?
- My research: \exists credible settlements mutually preferable to proliferation

Key Features

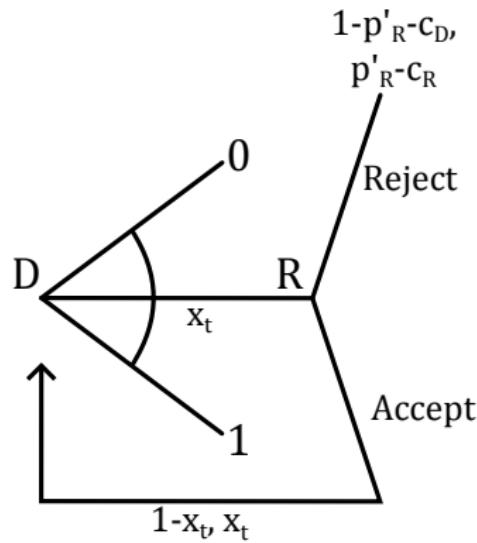
- Investment must be endogenous, costly
- Interaction must continue through time
- Declining state must be strategically vulnerable


Strategic Environment (Pre-Shift)

- Two actors: D (eclining) and R (ising)
- Infinite time horizon; $\delta \in (0, 1)$
- D offers $x_t \in [0, 1]$ every period
- R accepts, rejects, or builds
 - Accept \Rightarrow same bargaining problem next period
 - Reject \Rightarrow war $\Rightarrow R$ wins with probability p_R , states pay costs $c_i > 0$
 - Building costs $k > 0$. D prevents or advances to post-shift state

Strategic Environment (Post-Shift)

- D offers $x_t \in [0, 1]$
- R accepts or rejects.
 - Accept \Rightarrow same bargaining problem next period
 - Reject \Rightarrow war \Rightarrow R wins with probability $p'_R > p_R$, states pay costs $c_i > 0$


Game Tree

Equilibrium Concept

- Infinitely repeated game, complete information \Rightarrow stationary Markov perfect equilibrium
- SMPE = SPE + strategies a function of state of the world

Lemma: Peace Post-Shift

- D offers $x_t = p'_R - c_R$
- R accepts

“Too Hot” to Build

Proposition 1

Sufficiently large power shift \Rightarrow declining state prevents if rising state builds \Rightarrow declining state offers no concessions, rising state never builds

- $p'_R > p_R + \frac{c_D + c_R}{\delta}$
- Intuition: Power shift too hot

“Too Cold” to Build

Proposition 2

Sufficiently small power shift \Rightarrow nukes not worth investment \Rightarrow declining state offers no concessions, rising state never builds

- $p'_R < p_R + \frac{k(1-\delta)}{\delta}$
- Intuition: Power shift too cold

Just Right to Build?

Proposition 3 (Butter-for-Bombs)

Medium-level power shift and building cost great \Rightarrow declining state offers immediate concessions \Rightarrow rising state accepts and never builds

- D offers $\underbrace{p'_R - c_R}_{\text{Lemma}} - \frac{k(1-\delta)}{\delta}$
- D extracts investment cost

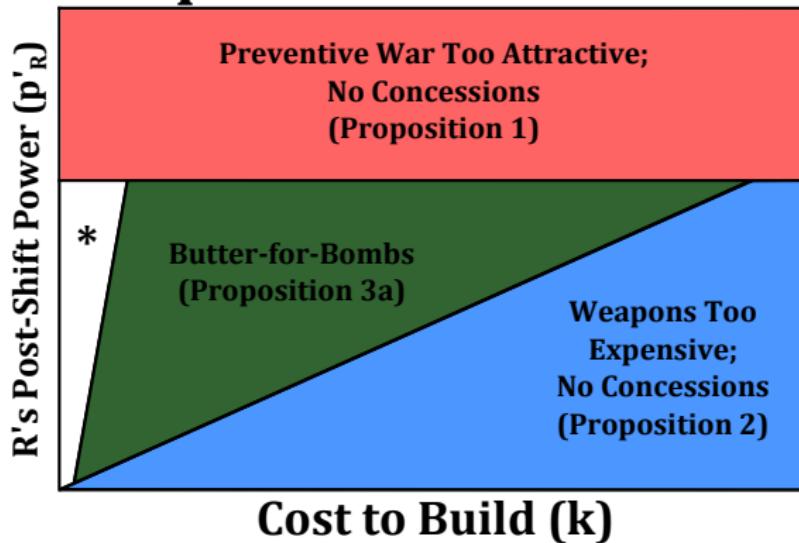
Just Right to Build?

Proposition 3 (Butter-for-Bombs)

Medium-level power shift and building cost great \Rightarrow declining state offers immediate concessions \Rightarrow rising state accepts and never builds

- D offers $\underbrace{p'_R - c_R}_{\text{Lemma}} - \frac{k(1-\delta)}{\delta}$
- D extracts investment cost
- Investment cost small \Rightarrow D prefers taking everything upfront, letting R proliferate, and making great concessions after

Demand for Nukes Low


Equilibrium Outcomes

R's Post-Shift Power (p'_R)

Cost to Build (k)

Demand for Nukes Low

Equilibrium Outcomes

Takeaway Points

- Model: bargaining shrinks demand
 - States need conventional defense
 - States need industry and rivals
 - Declining states can bribe some of the remaining states

Takeaway Points

- Model: bargaining shrinks demand
 - States need conventional defense
 - States need industry and rivals
 - Declining states can bribe some of the remaining states
- Rational explanation for proliferation: nukes are cheap or bargaining problem

End

Questions?