International Relations 101: War as a Bargaining Problem

William Spaniel

http://wjspaniel.wordpress.com/pscir106/

Parallel: Lawsuit

 A man trips and falls in your store and sues you for negligence.

Parallel: Lawsuit

- A man trips and falls in your store and sues you for negligence.
- Your lawyer and his lawyer agree on the following:
 - There is a 60% chance the lawsuit will be successful.
 - If he wins, you will have to pay him \$40,000.
 - Going to court will cost each of you \$10,000 in lawyers fees.

- 1. Either you or him concede immediately.
- 2. You reach an out-of-court settlement.
- 3. You let the court decide the matter.

- 1. Either you or him concede immediately.
- 2. You reach an out-of-court settlement.
- 3. You let the court decide the matter.
 - How should we expect this matter to be resolved?

- 1. Either you or him concede immediately.
- 2. You reach an out-of-court settlement.
- 3. You let the court decide the matter.

- 1. Either you or him concede immediately.
- 2. You reach an out-of-court settlement.
- 3. You let the court decide the matter.
 - Your expected payoff:
 - (-\$40,000)(.6) \$10,000 = -\$34,000

- 1. Either you or him concede immediately.
- 2. You reach an out-of-court settlement.
- 3. You let the court decide the matter.
 - Your expected payoff:
 - (-\$40,000)(.6) \$10,000 = -\$34,000
 - His expected payoff:
 - (\$40,000)(.6) \$10,000 = \$14,000

- 1. Either you or him concede immediately.
- 2. You reach an out-of-court settlement.
- 3. You let the court decide the matter.

- 1. Either you or him concede immediately.
 - If you concede, you lose \$40,000.
 - If he concedes, he receives nothing.
- 2. You reach an out-of-court settlement.
- 3. You let the court decide the matter.

- 1. Either you or him concede immediately.
 - If you concede, you lose \$40,000.
 - If he concedes, he receives nothing.
 - Each would rather go to court than concede.
- 2. You reach an out-of-court settlement.
- 3. You let the court decide the matter.

- 2. You reach an out-of-court settlement.
- 3. You let the court decide the matter.

2. You reach an out-of-court settlement.

- A settlement x is better for you than court if x < \$34,000.
- A settlement x is better for him than court if x > \$14,000.
- Therefore, any settlement offer between \$14,000 and \$34,000 is better for both parties than court!
- 3. You let the court decide the matter.

Conclusion

Settlement should be the result!

But This Is Just Like War...

- Wars produce a winner and a loser, perhaps probabilistically.
- Fighting is costly because it kills people and destroys things.

But This Is Just Like War...

- Wars produce a winner and a loser, perhaps probabilistically.
- Fighting is costly because it kills people and destroys things.
- So why can't two states settle matters off the battlefield?

But This Is Just Like War...

- Wars produce a winner and a loser, perhaps probabilistically.
- Fighting is costly because it kills people and destroys things.
- So why can't two states settle matters off the battlefield?
 - We call such a reason a "rationalist explanation for war."

Big question: Can war be mutually beneficial?

Crisis!

Venezuela discovers an oil deposit worth \$80 billion.

Crisis!

- Venezuela discovers an oil deposit worth \$80 billion.
- But Colombia hears about this and declares the oil deposit to be on its side of the border.

Crisis!

- Venezuela discovers an oil deposit worth \$80 billion.
- But Colombia hears about this and declares the oil deposit to be on its side of the border.
- The sides call in their militaries and prepare for war.

Venezuela's Perspective

- Venezuela will win the war (and \$80 billion in oil) 60% of the time.
- Cost of death, destruction, and lost oil: \$12 billion.

Colombia's Perspective

- Colombia will win the war (and \$80 billion in oil) 40% of the time.
- Cost of death, destruction, and lost oil: \$15 billion.

Interactive Question

• Is war inevitable between these two countries?

Venezuela's Needs

Expected payoff from war:

$$(80)(.6) - 12 = 36$$

 Venezuela must receive \$36 billion to be satisfied.

Colombia's Needs

- Expected payoff from war:
 - (80)(.4) 15 = 17
- Colombia must receive \$17 billion to be satisfied.

A Rationalist Explanation for War?

- Both countries have positive expected payoffs from fighting.
 - So war is rational for both parties.

A Rationalist Explanation for War?

- Both countries have positive expected payoffs from fighting.
 - So war is rational for both parties. Right?

Bargaining

- War is not rational here.
- Venezuela's and Colombia's demands sum to \$53 billion.
 - But there's \$80 billion in oil revenue to go around!
 - Where did the other \$27 billion go?

Bargaining

- War is **not** rational here.
- Venezuela's and Colombia's demands sum to \$53 billion.
 - But there's \$80 billion in oil revenue to go around!
 - Where did the other \$27 billion go?
 - The costs of war (\$15 billion and \$12 billion) ate it up.

A Better Resolution

- Let x be Venezuela's share of the settlement.
- Then x satisfies Venezuela if x > 36.
- Then x satisfies Colombia if 80 x > 17, or x < 53.

A Better Resolution

- Let x be Venezuela's share of the settlement.
- Then x satisfies Venezuela if x > 36.
- Then x satisfies Colombia if 80 x > 17, or x < 63.
 - Therefore, x is mutually satisfactory if 36 < x < 63

Conclusion

- Any settlement that gives \$36 billion but no more than \$63 billion to Venezuela is mutually preferable to war.
 - Such settlements exist.
 - Bargaining is mutually preferable to war.

War's Inefficiency Puzzle

 Why do states sometimes choose to resolve their differences with inefficient fighting when bargaining, in theory, leaves both better off?

War's Inefficiency Puzzle

 Was this a quirk with the payoffs for Venezuela and Colombia?

The Model

Two states: A and B.

- Two states: A and B.
- Bargain over an object worth 1.
 - This 1 is 100% of the good—whether it is \$80
 billion in oil, 16 square miles of land, or whatever.
 - Object is infinitely divisible.

- Two states: A and B.
- Bargain over an object worth 1.
- p_A is the probability A wins a war.
- p_B is the probability B wins a war.
 - No draws, so $p_A + p_B = 1$

- If the states fight a war, they pay costs $c_A > 0$ and $c_B > 0$.
 - These costs reflect absolute costs (how many people will die) and "resolve" (how much the state cares about the issue).

- If the states fight a war, they pay costs $c_A > 0$ and $c_B > 0$.
 - These costs reflect absolute costs (how many people will die) and "resolve" (how much the state cares about the issue).
 - The costs can take any functional form, as long as they are positive.

- If the states fight a war, they pay costs $c_A > 0$ and $c_B > 0$.
- Question: Is bargaining always an effective means of resolving the dispute?

A's Peace Constraint

- Let x be A's share of the bargained settlement.
- A is satisfied if:

$$x \ge p_A(1) - c_A$$

A's Peace Constraint

- Let x be A's share of the bargained settlement.
- A is satisfied if:

$$x \ge p_A(1) - c_A$$

$$x \ge p_A - c_A$$

B's Peace Constraint

- 1 − x is B's share of a peaceful settlement.
- B is satisfied if:

$$1 - x \ge p_B(1) - c_B$$

B's Peace Constraint

- 1 x is B's share of a peaceful settlement.
- B is satisfied if:

$$1 - x \ge p_B(1) - c_B$$
$$1 - x \ge p_B - c_B$$
$$x \le 1 - p_B + c_B$$

- A is satisfied if: $x \ge p_A c_A$
- B is satisfied if: $x \le 1 p_B + c_B$

- A is satisfied if: $x \ge p_A c_A$
- B is satisfied if: $x \le 1 p_B + c_B$
- x is mutually satisfactory if:

$$p_A - c_A \le x \le 1 - p_B + c_B$$

- A is satisfied if: $x \ge p_A c_A$
- B is satisfied if: $x \le 1 p_B + c_B$
- x is mutually satisfactory if:

$$p_A - c_A \le x \le 1 - p_B + c_B$$

$$p_A - c_A \le 1 - p_B + c_B$$

- A is satisfied if: $x \ge p_A c_A$
- B is satisfied if: $x \le 1 p_B + c_B$
- x is mutually satisfactory if:

$$p_A - c_A \le x \le 1 - p_B + c_B$$

$$p_A - c_A \le 1 - p_B + c_B$$

- $p_A + p_B = 1$
- $p_B = 1 p_A$

- A is satisfied if: $x \ge p_A c_A$
- B is satisfied if: $x \le 1 p_B + c_B$
- x is mutually satisfactory if:

$$p_A - c_A \le x \le 1 - p_B + c_B$$

$$p_A - c_A \le 1 - (1 - p_A) + c_B$$

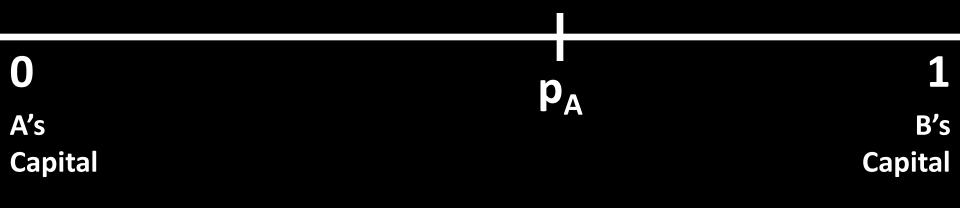
- A is satisfied if: $x \ge p_A c_A$
- B is satisfied if: $x \le 1 p_B + c_B$
- x is mutually satisfactory if:

$$p_A - c_A \le x \le 1 - p_B + c_B$$

$$p_{A} - c_{A} \le 1 - (1 - p_{A}) + c_{B}$$
 $p_{A} - c_{A} \le p_{A} + c_{B}$
 $c_{A} + c_{B} \ge 0$

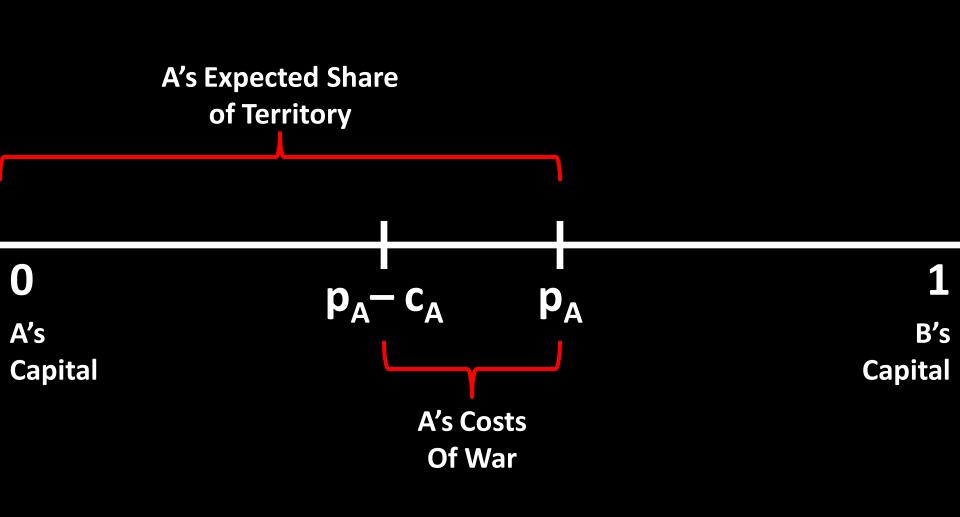
Conclusions

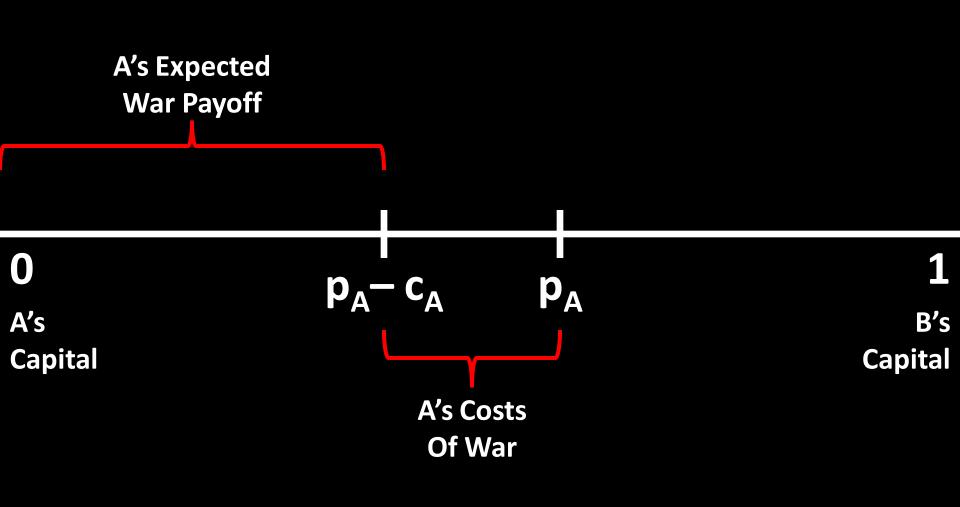
- Peace is possible.
- But how do we interpret this result?
 - Geometric model will help us understand what's going on here.

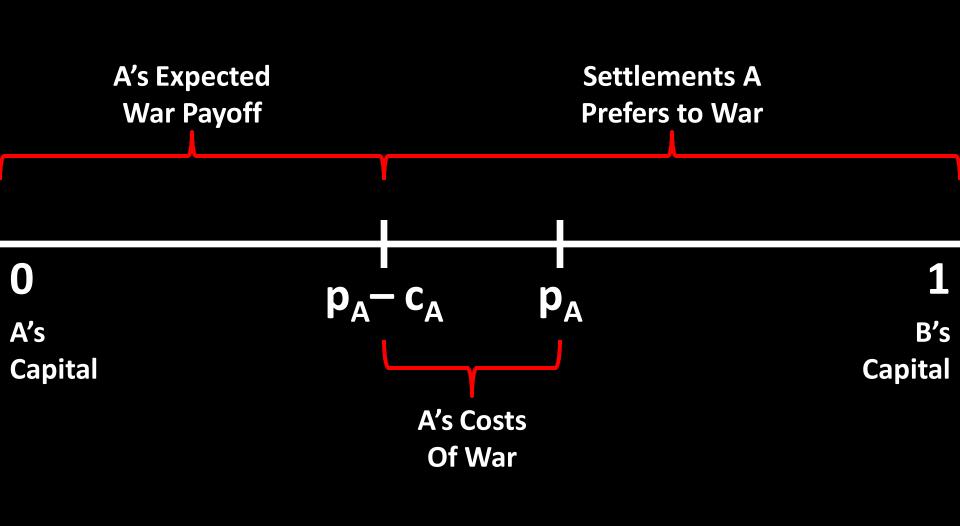

Two states: A and B.

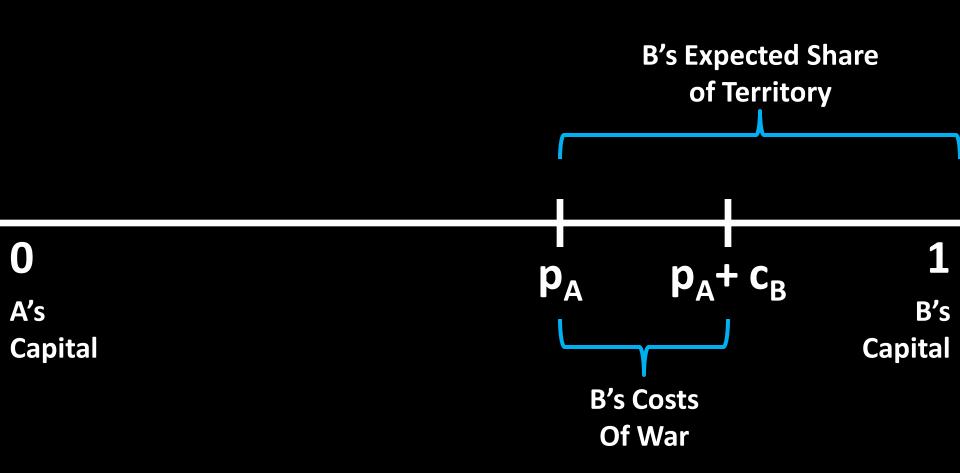

A's B's Capital Capital

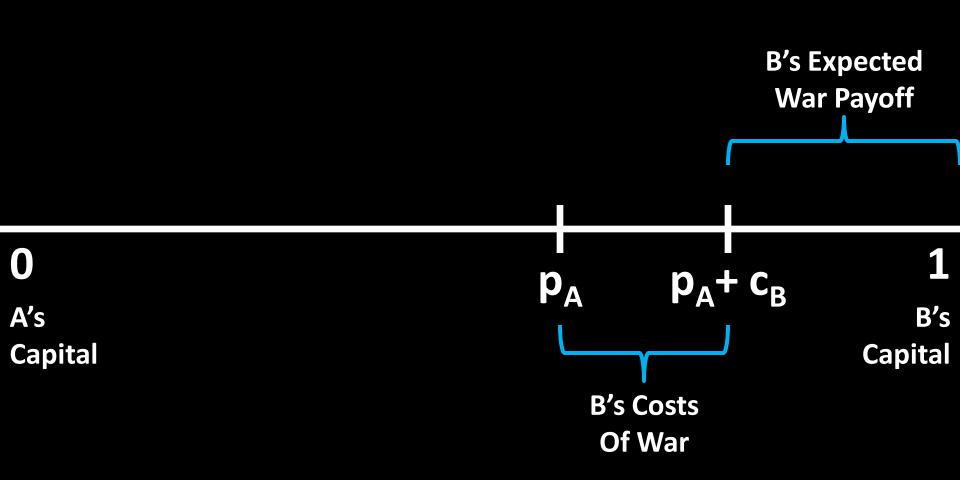
- Two states: A and B.
- Bargain over an object worth 1.


0	1
A's	B's
Capital	Capital


- Two states: A and B.
- Bargain over an object worth 1.
- p_A is the probability A wins a war.
- $1 p_A$ is the probability B wins a war.






• If the states fight a war, they pay costs $c_A > 0$ and $c_B > 0$.

