The Invisible Fist: How Potential Power Coerces Concessions

William Spaniel

University of Rochester

September 13, 2012

Naive Iran Policy?

Iran must comply with U.N. Security Council resolutions...we have offered Iran a clear path toward greater international integration if it lives up to its obligations...but the Iranian government must now demonstrate...its peaceful intentions or be held accountable to...international law. (Obama 2009)

Naive Iran Policy?

 Theoretical puzzle: Current bargaining models ⇒ realized power = concessions

Naive Iran Policy?

- Theoretical puzzle: Current bargaining models ⇒ realized power = concessions
- Policy puzzle: Iranian duplicity

Butter-for-Bombs in History

- Concessions-for-weapons ("butter-for-bombs") not uncommon
- Examples
 - North Korea (Nukes, Long-Range Missiles)

Butter-for-Bombs in History

- Concessions-for-weapons ("butter-for-bombs") not uncommon
- Examples
 - North Korea (Nukes, Long-Range Missiles)
 - Libya (Nukes, Chemical Weapons)
 - Cold War allies (South Korea, Australia)

Critical Insight

- Bombs do not grow on trees.
 - Weapons = costly
 - Why pay if you already get what you want?

Butter-for-Bombs Works (Sometimes)

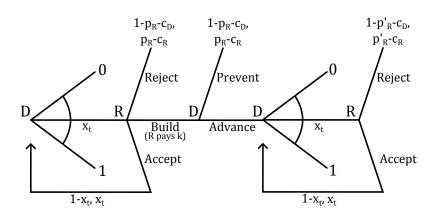
- Threat to build credible & cost large ⇒ butter-for-bombs works
 - Potential power = invisible fist

Butter-for-Bombs Works (Sometimes)

- Threat to build credible & cost large ⇒ butter-for-bombs works
 - Potential power = invisible fist
- Cost small ⇒ declining state's opportunism causes rising state to build
 - Pareto dominated

Modeling Butter-for-Bombs

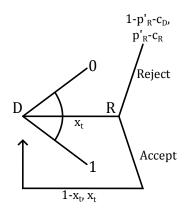
- Investment must be endogenous, costly
- Interaction must continue through time
- Declining state must be strategically vulnerable


Strategic Environment (Pre-Shift)

- Two actors: D(eclining) and R(ising)
- Infinite time horizon; $\delta \in (0,1)$
- D offers $x_t \in [0,1]$ every period
- R accepts, rejects, or builds
 - ullet Accept \Rightarrow same bargaining problem next period
 - Reject \Rightarrow war \Rightarrow R wins with probability p_R , states pay costs $c_i > 0$
 - Building costs k > 0. D prevents or advances to post-shift state

Strategic Environment (Post-Shift)

- D offers $x_t \in [0, 1]$
- R accepts or rejects.
 - ullet Accept \Rightarrow same bargaining problem next period
 - Reject \Rightarrow war \Rightarrow R wins with probability $p_R' > p_R$, states pay costs $c_i > 0$


Game Tree

Equilibrium Concept

- Infinitely repeated game, complete information ⇒ stationary
 Markov perfect equilibrium
- SMPE = SPE + strategies a function of state of the world

Lemma: Peace Post-Shift

- D offers $x_t = p'_R c_R$
- R accepts

"Too Hot" to Build

Proposition 1

Sufficiently large discount factors \Rightarrow declining state prevents if rising state builds \Rightarrow declining state offers no concessions, rising state never builds

•
$$\delta > \frac{c_D + c_R}{p_R' - p_R} \Rightarrow p_R' > p_R + \frac{c_D + c_R}{\delta}$$

Intuition: Power shift too hot

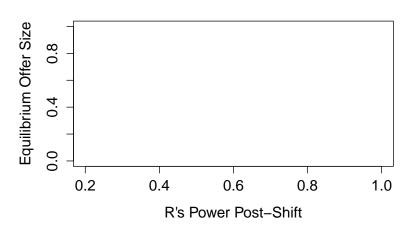
"Too Cold" to Build

Proposition 2

Sufficiently small discount factors \Rightarrow rising state too impatient to invest \Rightarrow declining state offers no concessions, rising state never builds

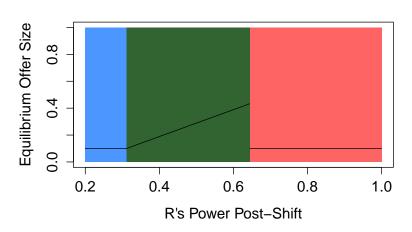
•
$$\delta < \frac{k}{k + p_R' - p_R} \Rightarrow p_R' < p_R + \frac{k(1 - \delta)}{\delta}$$

Intuition: Power shift too cold


Just Right to Build?

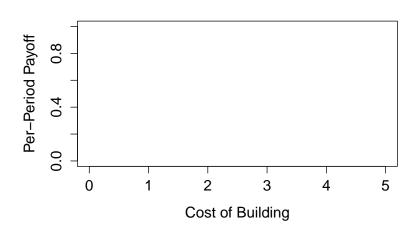
Proposition 3a (Butter-for-Bombs)

Discount factor in middle range and building cost great \Rightarrow declining state offers immediate concessions \Rightarrow rising state accepts and never builds


- D offers $p_R' c_R \frac{k(1-\delta)}{\delta}$
- D extracts investment cost

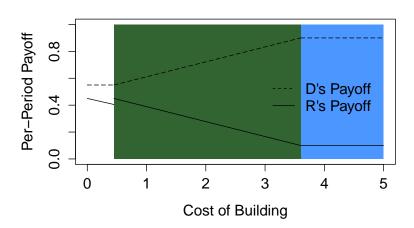
Just Right...For Settlement

Just Right...For Settlement



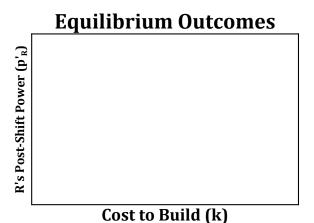
Just Right to Build

Proposition 3b (Investment)


Discount factor in middle range and building cost low \Rightarrow declining state offers 0 in pre-shift stage \Rightarrow rising state builds and receives great concessions in post-shift state

Smaller Costs Pareto Dominated

Smaller Costs Pareto Dominated



(1) Demand for Nukes Low

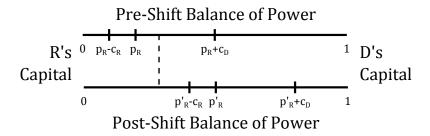
- JFK predicted 25 nuclear powers. 9 today. Why so few?
- Model: bargaining shrinks demand
 - States need conventional defense
 - States need industry and rivals
 - Declining states can bribe some of the remaining states

(1) Demand for Nukes Low

(1) Demand for Nukes Low

Equilibrium Outcomes

Cost to Build (k)


(2) Obama Isn't Naive

 Carrots alone (no sticks) convince rising state not to build in butter-for-bombs agreements

End

Questions?

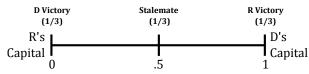
Appendix: What Does Butter-for-Bombs Look Like?

Appendix: What Is k?

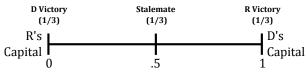
- Absolute costs (investment, construction, maintenance).
- Relative costs (resolve).
 - Model standardizes value of bargaining good at 1.

Appendix: Who Negotiates with Whom?

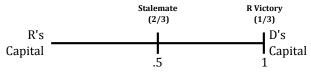
- *k* is decreasing in the intensity of the security relationship.
- States that care less about the issues do the negotiating!


Equilibrium Outcomes

Cost to Build (k)


Appendix: Nukes Defensive?

- p_R = weighted average of all possible war outcomes
- Pre-Shift: D victory possible $\Rightarrow p_R = \frac{1}{2}$



Appendix: Nukes Defensive?

- \bullet p_R = weighted average of all possible war outcomes
- Pre-Shift: D victory possible $\Rightarrow p_R = \frac{1}{2}$

• Post-Shift: D victory not possible $\Rightarrow p_R' = \frac{2}{3}$

Result: Nukes improve R's average outcome even if never used

Appendix: Carrots vs. Sticks

- Axelrod (1984): "sticks" model
 - Threat of bigger sticks inspires cooperation today
- Invisible Fist: "carrots" model
 - Bigger stick option ruled out by assumption

Appendix: Non-Nuclear Example

- This is a model of tribute.
- "Declining state" pays tribute to the "rising state"; "rising state" does not do the bad thing to the "declining state" in return.
- Stylized fact: Empires extract tribute out of their protectorates without having a large military presence.
- Why don't protectorates rebel?
 - Empires will "shift power" by mobilizing troops to the protectorate.
 - But mobilization is costly. The protectorate can extract this cost out of the empire by offering less tribute.

Appendix: Institutional Puzzle

- States often sign arms control treaties.
- This creates extra costs for the states if they ever want to break the treaty.
- So why bother signing at all?

Appendix: Institutional Puzzle

- States often sign arms control treaties.
- This creates extra costs for the states if they ever want to break the treaty.
- So why bother signing at all?
 - Answer: Rising states have incentive to artificially inflate their investment costs.

Appendix: Endogenous Building Costs

Proposition 4

Suppose the game begins with the rising state choosing a cost level k > 0. Then there exists a non-knife-edge set of parameters for which R chooses a cost level strictly bound above 0 in the unique stationary MPE.

- Intuition: When *k* is low, the declining state earns more by forcing the rising state to build.
- But this means the rising state earns less through bargaining and must pay the deadweight loss k.
- R is better off when the costs are greater!

